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Learning Objectives

• Describe the scale of available sequencing data

• Understand that assembly loses information
• Know why decomposing into k-mers is useful
• Describe how a de Bruijn graph can be an efficient
representation of a k-mer set

• Understand how a de Bruijn graph can be coloured to represent
multiple datasets

• Outline the two main strategies for k-mer indexing: colour
aggregative and k-mer aggregative

• Describe the core algorithm used by BlastFrost (colour
aggregative) and BIGSI (k-mer aggregative)
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Massive datasets?



Sequencing Data Explosion

European Nucleotide Archive: Read Data

• Uncompressed at 2-bits per base:
• 5, 381.2 TB (without any metadata or accession information)
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Searching all this data: surveillance of colistin resistance

• Which genome and metagenome read sets from all over the
world contain MCR-1?
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Formal Problem

• D is a collection of n sets of reads

• S is a query sequence of arbitrary length (including > len(read))
• Identify which sets of reads in D contain S
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Just use BLAST?

• By the end, there will be ∼ 3x more data than at the start.
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What about only using assembled data?

• No matter the method, assembly causes loss of information.

6



What about only using assembled data?

• No matter the method, assembly causes loss of information.

6



What about only using assembled data?

• No matter the method, assembly causes loss of information.

6



What about only using assembled data?

• No matter the method, assembly causes loss of information.

6



What about only using assembled data?

• No matter the method, assembly causes loss of information.

6



What about only using assembled data?

• No matter the method, assembly causes loss of information.
6



Let’s complicate but actually
simplify this problem



k-mers!
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Formal Problem: querying the set of sets of k-mers

• D is a collection of n sets of reads k-mers

• S is a query sequence of arbitrary length (including
>read-length k)

• Identify which sets of reads k-mers in D contain S
• Bonus: also applicable to anything you can decompose into
k-mers e.g., assembled sequences and long-reads
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Algorithms to query a set of
k-mer sets



Components of a solution
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Indexing a single set of k-mers



K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

10

homolog.us/Tutorials/book4/p2.1.html


K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

10

homolog.us/Tutorials/book4/p2.1.html


K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

10

homolog.us/Tutorials/book4/p2.1.html


K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

10

homolog.us/Tutorials/book4/p2.1.html


K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

10

homolog.us/Tutorials/book4/p2.1.html


K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

10

homolog.us/Tutorials/book4/p2.1.html


K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

10

homolog.us/Tutorials/book4/p2.1.html


K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

10

homolog.us/Tutorials/book4/p2.1.html


K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

10

homolog.us/Tutorials/book4/p2.1.html


K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

10

homolog.us/Tutorials/book4/p2.1.html


K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

10

homolog.us/Tutorials/book4/p2.1.html


de Bruijn graph collapses diversity: NDM
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K-mer Set Data Structure: Bit-Vector
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K-mer Set Data Structure: making bit-vectors more efficient

Adapted from wikimedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg 13
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K-mer Set Data Structure: bloom filters

Adapted from wikimedia.org/wiki/File:Bloom_filter_speed.svg 14
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How do we index across sets of
k-mers?



Two possible approaches: colour or k-mer aggregative

• Colour aggregative: k-mer -> sample(s)
• K-mer aggregative: sample -> k-mer(s)
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Colour aggregative methods



Coloured de Bruijn graph
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Succinct/Compacted coloured de Bruijn graphs

[Holley and Melsted, 2019]

• Compact maximal
non-branching
paths into untigs

• Use probabilistic
data structures e.g.
bloomfilters,
minhash sketches,
minimisers

• AKA make things
more approximate
but smaller!
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BlastFrost
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BlastFrost: Similar but for bigger sequences!

[Luhmann et al., 2020]
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BlastFrost scaling

[Luhmann et al., 2020]
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K-mer aggregative methods



Index based on sample -> k-mer(s)
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BIGSI

[Bradley et al., 2019]
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BIGSI indexing of ENA

[Bradley et al., 2019]

• Indexing all bacterial, viral and parasitic reads in ENA ( 500,000
sets, 170TB of data)

• 1.5TB index that be queried near instantaneously

23



Which method?



Many Options

[Marchet et al., 2021]

• It depends: complexity, sequence length, query length
• What features you need e.g., inserting new sets, space vs time
trade-offs
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Summary



Learning Objectives

• Vast amount of sequence data and it is growing rapidly

• Assembly just a path through graph NOT all possible paths
• Fixed-size of k-mers makes them more tractable
• dBG encoded as vector gracefully handles k-mer redundancy
• coloured dBG (cdBG) represent multiple samples
• When indexing across samples:

• Map from union of all k-mers to samples they contain (colour
aggregative) e.g., BiFrost

• BiFrost uses compacted cdBG to index across samples
• Map from each sample to the k-mers it contains (k-mer
aggregative) e.g., BIGSI

• BIGSI creates a big matrix of bloom filters where each column is a
sample

• Active field and choosing best method is very data and task
specific
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