Searching massive amounts of sequencing data using K-mers and graphs

Finlay Maguire
February 15, 2023
FCS, Dalhousie

Learning Objectives

- Describe the scale of available sequencing data

Learning Objectives

- Describe the scale of available sequencing data
- Understand that assembly loses information

Learning Objectives

- Describe the scale of available sequencing data
- Understand that assembly loses information
- Know why decomposing into k-mers is useful

Learning Objectives

- Describe the scale of available sequencing data
- Understand that assembly loses information
- Know why decomposing into k-mers is useful
- Describe how a de Bruijn graph can be an efficient representation of a k-mer set

Learning Objectives

- Describe the scale of available sequencing data
- Understand that assembly loses information
- Know why decomposing into k-mers is useful
- Describe how a de Bruijn graph can be an efficient representation of a k-mer set
- Understand how a de Bruijn graph can be coloured to represent multiple datasets

Learning Objectives

- Describe the scale of available sequencing data
- Understand that assembly loses information
- Know why decomposing into k-mers is useful
- Describe how a de Bruijn graph can be an efficient representation of a k-mer set
- Understand how a de Bruijn graph can be coloured to represent multiple datasets
- Outline the two main strategies for k-mer indexing: colour aggregative and k-mer aggregative

Learning Objectives

- Describe the scale of available sequencing data
- Understand that assembly loses information
- Know why decomposing into k-mers is useful
- Describe how a de Bruijn graph can be an efficient representation of a k-mer set
- Understand how a de Bruijn graph can be coloured to represent multiple datasets
- Outline the two main strategies for k-mer indexing: colour aggregative and k-mer aggregative
- Describe the core algorithm used by BlastFrost (colour aggregative) and BIGSI (k-mer aggregative)

Massive datasets?

Sequencing Data Explosion

European Nucleotide Archive: Read Data

Sequencing Data Explosion

Reads growth

08-Feb-2021

European Nucleotide Archive: Read Data

Sequencing Data Explosion

Reads growth

08-Feb-2021

-Sequences (124.9 trillions) -Bases (21,524.8 trillions)

European Nucleotide Archive: Read Data

Sequencing Data Explosion

Reads growth

08-Feb-2021

-Sequences (124.9 trillions) -Bases (21,524.8 trillions)

European Nucleotide Archive: Read Data

- Uncompressed at 2-bits per base:

Sequencing Data Explosion

-Sequences (124.9 trillions) - Bases (21,524.8 trillions)

European Nucleotide Archive: Read Data

- Uncompressed at 2-bits per base:
- 5,381.2 TB (without any metadata or accession information)

Searching all this data: surveillance of colistin resistance

Countries reporting plasmid-mediated colistin resistance encoded by mcr-1

Searching all this data: surveillance of colistin resistance

Countries reporting plasmid-mediated colistin resistance encoded by mcr-1AnimalsHumansAnimals and humansAnimals and environmentAnimals, humans and environment

Searching all this data: surveillance of colistin resistance

Countries reporting plasmid-mediated colistin resistance encoded by mcr-1

Data source: Al-Tawfiq, J. A., Laxminarayan, R. \& Mendelson, M. How should we respond to the emergence of plasmid-mediated colistin resistance in humans and animals? Int. J. Infect. Dis. (2016). doi:10.1016/j.ijid.2016.11.415

CDDEP $\begin{aligned} & \text { pue centu ron } \\ & \text { Disease Dinaics, } \\ & \text { Economics \& Policy }\end{aligned}$

Searching all this data: surveillance of colistin resistance

Countries reporting plasmid-mediated colistin resistance encoded by mcr-1

Data source: Al-Tawfiq, J. A., Laxminarayan, R. \& Mendelson, M. How should we respond to the emergence of plasmid-mediated colistin resistance in humans and animals? Int. J. Infect. Dis. (2016). doi:10.1016/j.ijid. 2016.11.415

- Which genome and metagenome read sets from all over the world contain MCR-1?

Formal Problem

- \mathcal{D} is a collection of n sets of reads

Formal Problem

- \mathcal{D} is a collection of n sets of reads
- S is a query sequence of arbitrary length (including $>$ len(read))

Formal Problem

- \mathcal{D} is a collection of n sets of reads
- S is a query sequence of arbitrary length (including $>$ len(read))
- Identify which sets of reads in \mathcal{D} contain S

Just use BLAST?

40-core BLASTN extrapolation

Runtime

0.0	0.2	0.4	0.6	0.8	1.0	1.2
		150 bp Reads				

Just use BLAST?

40-core BLASTN extrapolation

Just use BLAST?

40-core BLASTN extrapolation

Just use BLAST?

- By the end, there will be $\sim 3 x$ more data than at the start.

What about only using assembled data?

$$
\begin{aligned}
& \begin{array}{ll}
\stackrel{\rightharpoonup}{0} & \text { Group } \\
\overbrace{0}^{2} & \rightarrow \text { AMR Genes }
\end{array} \\
& \text { AMR Genes } \\
& \rightarrow \text { Plasmid } \\
& \rightarrow \text { VF Genes }
\end{aligned}
$$

What about only using assembled data?

- No matter the method, assembly causes loss of information.

Let's complicate but actually simplify this problem

Sequence Sets

k-mers!

Sequence Sets

k-mers!

Sequence Sets
Decompose to K-mers

k-mers!

Sequence Sets Decompose to K-mers

Sequence Sets
Decompose to K-mers
K-mer Counts

k-mers!

Sequence Sets
Decompose to K-mers
K-mer Counts

k-mers!

Sequence Sets
Decompose to K-mers

K-mer Counts

k-mers!

Sequence Sets

Decompose to K-mers

K-mer Counts

K-mer Sets

GGC		CTC
AGC	TCA	

k-mers!

Sequence Sets

AGCTCA
GGCTCA
GGCTCA
ITCAC

Decompose to K-mers

K-mer Counts

K-mer Sets

k-mers!

Sequence Sets

Decompose to K-mers

K-mer Counts

K-mer Sets

k-mers!

Sequence Sets

AGCTCA
GGCTCA
GGCTCA
ITTCAC

Decompose to K-mers

K-mer Counts

$1 \times$ GGC	$2 \times \mathrm{CTC}$
$1 \times$ AGC	$2 \times$ TCA
	$2 \times \mathrm{GCT}$
$1 \times$ CAC	
$1 \times$ GGC	
$1 \times$ GCT	$2 \times$ TCA
$1 \times$ CTC	
$1 \times$ TIT	

K-mer Sets

$\begin{aligned} & \text { GGC TCA } \\ & \text { AGC } \end{aligned}$	CTC
	GCT
CAC CTC	TCA
GCT TTT	TTC

Formal Problem: querying the set of sets of k-mers

- \mathcal{D} is a collection of n sets of reads k-mers

Formal Problem: querying the set of sets of k-mers

- \mathcal{D} is a collection of n sets of reads k-mers
- S is a query sequence of arbitrary length (including >read-length k)

Formal Problem: querying the set of sets of k-mers

- \mathcal{D} is a collection of n sets of reads k-mers
- S is a query sequence of arbitrary length (including >read-length k)
- Identify which sets of k-mers in \mathcal{D} contain S

Formal Problem: querying the set of sets of k-mers

- \mathcal{D} is a collection of n sets of reads k-mers
- S is a query sequence of arbitrary length (including >read-length k)
- Identify which sets of reads k-mers in \mathcal{D} contain S
- Bonus: also applicable to anything you can decompose into k-mers e.g., assembled sequences and long-reads

Algorithms to query a set of k-mer sets

Components of a solution

K-mer Sets

```
GGC
    TCA
AGC
    GCT
```


Components of a solution

K-mer Sets

Components of a solution

K-mer Sets

Components of a solution

K-mer Sets

Components of a solution

K-mer Sets

Components of a solution

Indexing a single set of k-mers

K-mer Set Data Structure: de Bruijn graphs

sequence
ATGGAAGTCGCGGAATC

K-mer Set Data Structure: de Bruijn graphs

sequence
ATGGAAGTCGCGGAATC

7 mers

K-mer Set Data Structure: de Bruijn graphs

$\begin{array}{ll}\text { sequence } & \text { ATGGAAGTCGCGGAATC } \\ 7 \text { mers } & \text { ATGGAAG }\end{array}$

K-mer Set Data Structure: de Bruijn graphs

sequence

7 mers
ATGGAAGTCGCGGAATC

ATGGAAG
TGGAAGT

K-mer Set Data Structure: de Bruijn graphs

$\begin{array}{lr}\text { sequence } & \text { ATGGAAGTCGCGGAATC } \\ 7 \mathrm{mers} & \text { ATGGAAG } \\ & \text { TGGAAGT } \\ \text { GGAAGIC } \\ \text { GAAGTCG } \\ \text { AAGTCGC } \\ & \text { AGTCGCG } \\ & \text { GTCGCGG } \\ & \text { CGCGGAA } \\ & \text { CGCGAAA } \\ & \text { CGAATC }\end{array}$
homolog.us/Tutorials/book4/p2.1.html

K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

K-mer Set Data Structure: de Bruijn graphs

homolog.us/Tutorials/book4/p2.1.html

K-mer Set Data Structure: de Bruijn graphs

de Bruijn graph
ATGGAAG \rightarrow TGGAAGT \rightarrow GGAAGTC
homolog.us/Tutorials/book4/p2.1.html

K-mer Set Data Structure: de Bruijn graphs

de Bruijn graph

homolog.us/Tutorials/book4/p2.1.html

de Bruijn graph collapses diversity: NDM

de Bruijn graph collapses diversity: NDM

de Bruijn graph collapses diversity: NDM

de Bruijn graph collapses diversity: NDM

de Bruijn graph collapses diversity: NDM

de Bruijn graph collapses diversity: NDM

de Bruijn graph collapses diversity: NDM

K-mer Set Data Structure: Bit-Vector

K-mer Sets

K-mer Set Data Structure: Bit-Vector

K-mer Sets

K-mer Set Data Structure: Bit-Vector

K-mer Set Data Structure: Bit-Vector

K-mer Sets

K-mer Set Data Structure: Bit-Vector

k-mers

AGC

TTT

CTA

hash
 k-mers function

AGC

TTT

CTA

K-mer Set Data Structure: making bit-vectors more efficient

K-mer Set Data Structure: making bit-vectors more efficient

K-mer Set Data Structure: making bit-vectors more efficient

hash
k-mers function hash-table

K-mer Set Data Structure: bloom filters

K-mer Set Data Structure: bloom filters

Bloom Filter
Storage Table

$\xrightarrow{\text { Do you have 'TTT'? }}$| Filter: |
| :---: |
| No |

K-mer Set Data Structure: bloom filters

How do we index across sets of k-mers?

Two possible approaches: colour or k-mer aggregative

K-mer Sets

GGC AGC	TCA	$\begin{aligned} & \text { CTC } \\ & \text { GCT } \end{aligned}$
$\begin{gathered} \text { CAC CTC } \\ \text { GGC } \end{gathered}$		TCA
		T10

Two possible approaches: colour or k-mer aggregative

K-mer Sets
Colour Aggregative

Two possible approaches: colour or k-mer aggregative

K-mer Sets Colour Aggregative

Two possible approaches: colour or k-mer aggregative

K-mer Sets
Colour Aggregative

Two possible approaches: colour or k-mer aggregative

K-mer Sets
Colour Aggregative

Two possible approaches: colour or k-mer aggregative

K-mer Sets
Colour Aggregative

Two possible approaches: colour or k-mer aggregative

K-mer Sets
Colour Aggregative

Two possible approaches: colour or k-mer aggregative

K-mer Sets
Colour Aggregative

Two possible approaches: colour or k-mer aggregative

K-mer Sets
Colour Aggregative

Two possible approaches: colour or k-mer aggregative

K-mer Sets
Colour Aggregative
K-mer Aggregative

Two possible approaches: colour or k-mer aggregative

Two possible approaches: colour or k-mer aggregative

Two possible approaches: colour or k-mer aggregative

K-mer Sets

K-mer Aggregative

O AGC GGC TCA CTC GCT
OCT CAC GGC CTC TIT TCA TTC

Two possible approaches: colour or k-mer aggregative

- Colour aggregative: k -mer -> sample(s)

Two possible approaches: colour or k-mer aggregative

- Colour aggregative: k-mer -> sample(s)
- K-mer aggregative: sample -> k-mer(s)

Colour aggregative methods

Coloured de Bruijn graph

AATCGACAGCCGG
AATCGATAGCCGG
CGAT-GATA- $\overline{A T A G}-$ TAGC

Coloured de Bruijn graph

Coloured de Bruijn graph

AATCGACAG̈GCCGG=
AATCGATAGCCGG CGAT-GATA-ATAG-TAGC
AATC- ATCG- TCGA-CGAC-GACA-ACAG-CAGC-AGCC-GCCG-CCGG

Coloured de Bruijn graph

Coloured de Bruijn graph

AATCGAC:AGCC'GG
AATCGATAGCCGG=
CGAT-GATA ATAG TAGC
AATC- ATCG-TCGA-CGAC-GACA-ACAG-CAGC-AGCC-GCCG-CCGG

Coloured de Bruijn graph

AATCGACAGCCGG
AATCGATAGCGG: CGAT-GATA-ATAG-TAGC
AATC- \triangle ATCG- TCGA -CGAC-GACA-ACAG-CAGC-AGCC-GCCG-CCGG

Coloured de Bruijn graph

Coloured de Bruijn graph

Succinct/Compacted coloured de Bruijn graphs

[Holley and Melsted, 2019]

Succinct/Compacted coloured de Bruijn graphs

(b)
[Holley and Melsted, 2019]

Succinct/Compacted coloured de Bruijn graphs

(b)
[Holley and Melsted, 2019]

Succinct/Compacted coloured de Bruijn graphs

TGC
(b)
[Holley and Melsted, 2019]

Succinct/Compacted coloured de Bruijn graphs

[Holley and Melsted, 2019]

Succinct/Compacted coloured de Bruijn graphs

[Holley and Melsted, 2019]

Succinct/Compacted coloured de Bruijn graphs

- Compact maximal non-branching paths into untigs
[Holley and Melsted, 2019]

Succinct/Compacted coloured de Bruijn graphs

[Holley and Melsted, 2019]

Succinct/Compacted coloured de Bruijn graphs

[Holley and Melsted, 2019]

- Compact maximal non-branching paths into untigs
- Use probabilistic data structures e.g. bloomfilters, minhash sketches, minimisers
- AKA make things more approximate but smaller!

BlastFrost

K-mer Sets

BlastFrost

K-mer Sets

GGC		CTC
AGC	TCA	
CAC		CTC
GGC	TCA	
GCT	TTT	TTC

BlastFrost

BlastFrost

BlastFrost

K-mer Sets

BlastFrost

BlastFrost: Similar but for bigger sequences!

[Luhmann et al., 2020]

BlastFrost: Similar but for bigger sequences!

BlastFrost: Similar but for bigger sequences!

BlastFrost: Similar but for bigger sequences!

BlastFrost scaling

[Luhmann et al., 2020]

K-mer aggregative methods

Index based on sample -> k-mer(s)

K-mer Sets

Colour Aggregative

K-mer Aggregative

BIGSI

[Bradley et al., 2019]

BIGSI

K-mer Sets

[Bradley et al., 2019]

BIGSI

K-mer Sets

[Bradley et al., 2019]

BIGSI

K-mer Sets

[Bradley et al., 2019]

BIGSI

K-mer Sets

[Bradley et al., 2019]

BIGSI

[Bradley et al., 2019]

BIGSI indexing of ENA

Searching a snapshot of publically available bacterial WGS datasets from the ENA/SRA ($\mathrm{N}=455,632$) Dec 2016.

This is a proof-of-concept demonstration of the BIGSI search index for microbial genomes. We have indexed the complete bacterial and viral whole-genome sequence content of the European Nudeatide Archive as of December 2016. See our paper.
Thanks to CIMMB for hosting
You can use this to search for samples with a given gene, plasmid, or SNP. Queries must be at lesst 61 bp in length. Species metadata provided by analysis by Bracken + Kraken.
More info at https:/higgi.readme.io/ and http/j/github.com/phelimb/bigsi.
ATGAAAAACACAATACATATCAACTTCGCTATTTTTTTAATAATTGCAAATATTATCTACAGCAGOGCCAGTGCATCAACAK Proportion of query k-mers threshold: 100
eg MCR-1,OXA-1

6446 results

O 100% of query k -mers found in ERR434640 (Escherichia coli : 96.99%, Sligella demeri: 2.93%; 0 100\% of query k-mers found in ERR434996 (Escherichia ooli: 56.39\%: Shigella boydii : 3.21\%:)
(100Ns of query k-mers found in ERR434282 (Escherichia coli: 99923\%; Enterolacter sp. R4-368 =11.03\%;
O 100% of query k-mers found in ERR434374 (Escherichis coli: :54.83\%; Shigella boydii : 3.36%;)
O 1000 of query k -mens found in ERR 034477 (Escherichin coli: : 61.75%; Stigella boydii : 16.75%)
-1008 of query k-mers found in ERR434915 (Escherichia coli: :99.97\%; Erwinia tasmaniensis: :0.03\%;
[Bradley et al., 2019]

- Indexing all bacterial, viral and parasitic reads in ENA (500,000 sets, 170TB of data)
- 1.5TB index that be queried near instantaneously

Which method?

Many Options

[Marchet et al., 2021]

Many Options

method name	aggregation technique	k-mer set data structure	aggregation data structure
SeqOthello	color aggregative methods	hashing techique	1 or several color matrices
BiFrost		hash table	
Metannot			
Multi-BRWT			
Pufferlish	ACA $\bullet \cdot$ ATA \bullet ATC \bullet CAT $\bullet \bullet$ GCA		
BLight			
VARI(-Merge), Rainbowfish		BWT	
Mantis(+MST)		Counting Quotient Filter	
BFT		Bloom filter trie	
SBT, SSBT, AllSomeSBT HowDeSBT	k-mer aggregative methods - ACA, ATC, CAT	Bloom filter	search tree/forest
BIGSI, COBS, RAMBO	ATA, CAT, GCA		Bloom filter matrix /matrices

[Marchet et al., 2021]

Many Options

method name	aggregation technique	k -mer set data structure	aggregation data structure
SeqOthello	color aggregative methods	hashing techique	1 or several color matrices
BiFrost		hash table	
Metannot			
Multi-BRWT			
Pufferlish	$\begin{aligned} & \text { ACA } \bullet \bullet \\ & \text { ATA } \bullet \\ & \text { ATC } \bullet \bullet \\ & \text { CAT } \cdot \bullet \\ & \text { GCA } \end{aligned}$		
BLight			
VARI(-Merge), Rainbowfish		BWT	
Mantis(+MST)		Counting Quotient Filter	
BFT		Bloom filter trie	
SBT, SSBT, AllSomeSBT HowDeSBT	k-mer aggregative methods - ACA, ATC, CAT	Bloom filter	search tree/forest
BIGSI, COBS, RAMBO	$\left\lvert\, \begin{aligned} & \text { • ATA, CAT, GCA } \\ & \hdashline \end{aligned}\right.$		Bloom filter matrix /matrices

[Marchet et al., 2021]

- It depends: complexity, sequence length, query length

Many Options

method name	aggregation technique	k-mer set data structure	aggregation data structure
SeqOthello	color aggregative methods	hashing techique	1 or several color matrices
BiFrost		hash table	
Metannot			
Multi-BRWT			
Pufferfish			
BLight	ACA \bulletATA \bulletATC $\bullet \quad \bullet$CAT $\bullet \quad$GCA		
VARI(-Merge), Rainbowfish		BWT	
Mantis(+MST)		Counting Quotient Filter	
BFT		Bloom filter trie	
SBT, SSBT, AllSomeSBT HowDeSBT	k-mer aggregative methods - ACA, ATC, CAT	Bloom filter	search tree/forest
BIGSI, COBS, RAMBO	$\left\lvert\, \begin{array}{ll} \text { • ATA, CAT, GCA } \\ & \end{array}\right.$		Bloom filter matrix /matrices

[Marchet et al., 2021]

- It depends: complexity, sequence length, query length
- What features you need e.g., inserting new sets, space vs time trade-offs

Summary

Learning Objectives

- Vast amount of sequence data and it is growing rapidly

Learning Objectives

- Vast amount of sequence data and it is growing rapidly
- Assembly just a path through graph NOT all possible paths

Learning Objectives

- Vast amount of sequence data and it is growing rapidly
- Assembly just a path through graph NOT all possible paths
- Fixed-size of k-mers makes them more tractable

Learning Objectives

- Vast amount of sequence data and it is growing rapidly
- Assembly just a path through graph NOT all possible paths
- Fixed-size of k-mers makes them more tractable
- dBG encoded as vector gracefully handles k-mer redundancy

Learning Objectives

- Vast amount of sequence data and it is growing rapidly
- Assembly just a path through graph NOT all possible paths
- Fixed-size of k-mers makes them more tractable
- dBG encoded as vector gracefully handles k-mer redundancy
- coloured dBG (cdBG) represent multiple samples

Learning Objectives

- Vast amount of sequence data and it is growing rapidly
- Assembly just a path through graph NOT all possible paths
- Fixed-size of k-mers makes them more tractable
- dBG encoded as vector gracefully handles k-mer redundancy
- coloured dBG (cdBG) represent multiple samples
- When indexing across samples:

Learning Objectives

- Vast amount of sequence data and it is growing rapidly
- Assembly just a path through graph NOT all possible paths
- Fixed-size of k-mers makes them more tractable
- dBG encoded as vector gracefully handles k-mer redundancy
- coloured dBG (cdBG) represent multiple samples
- When indexing across samples:
- Map from union of all k-mers to samples they contain (colour aggregative) e.g., BiFrost

Learning Objectives

- Vast amount of sequence data and it is growing rapidly
- Assembly just a path through graph NOT all possible paths
- Fixed-size of k-mers makes them more tractable
- dBG encoded as vector gracefully handles k-mer redundancy
- coloured dBG (cdBG) represent multiple samples
- When indexing across samples:
- Map from union of all k-mers to samples they contain (colour aggregative) e.g., BiFrost
- BiFrost uses compacted cdBG to index across samples

Learning Objectives

- Vast amount of sequence data and it is growing rapidly
- Assembly just a path through graph NOT all possible paths
- Fixed-size of k-mers makes them more tractable
- dBG encoded as vector gracefully handles k-mer redundancy
- coloured dBG (cdBG) represent multiple samples
- When indexing across samples:
- Map from union of all k-mers to samples they contain (colour aggregative) e.g., BiFrost
- BiFrost uses compacted cdBG to index across samples
- Map from each sample to the k-mers it contains (k-mer aggregative) e.g., BIGSI

Learning Objectives

- Vast amount of sequence data and it is growing rapidly
- Assembly just a path through graph NOT all possible paths
- Fixed-size of k-mers makes them more tractable
- dBG encoded as vector gracefully handles k-mer redundancy
- coloured dBG (cdBG) represent multiple samples
- When indexing across samples:
- Map from union of all k-mers to samples they contain (colour aggregative) e.g., BiFrost
- BiFrost uses compacted cdBG to index across samples
- Map from each sample to the k -mers it contains (k-mer aggregative) e.g., BIGSI
- BIGSI creates a big matrix of bloom filters where each column is a sample

Learning Objectives

- Vast amount of sequence data and it is growing rapidly
- Assembly just a path through graph NOT all possible paths
- Fixed-size of k-mers makes them more tractable
- dBG encoded as vector gracefully handles k-mer redundancy
- coloured dBG (cdBG) represent multiple samples
- When indexing across samples:
- Map from union of all k-mers to samples they contain (colour aggregative) e.g., BiFrost
- BiFrost uses compacted cdBG to index across samples
- Map from each sample to the k -mers it contains (k-mer aggregative) e.g., BIGSI
- BIGSI creates a big matrix of bloom filters where each column is a sample
- Active field and choosing best method is very data and task specific

Questions?

References i

囯 Bradley, P., Den Bakker, H. C., Rocha, E. P., McVean, G., and Iqbal, Z. (2019).

Ultrafast search of all deposited bacterial and viral genomic data.
Nature biotechnology, 37(2):152-159.
Rolley, G. and Melsted, P. (2019).
Bifrost-highly parallel construction and indexing of colored and compacted de bruijn graphs.
BioRxiv, page 695338.
(in Luhmann, N., Holley, G., and Achtman, M. (2020).
Blastfrost: Fast querying of 100,000 s of bacterial genomes in bifrost graphs.
BioRxiv.

References ii

Marchet, C., Boucher, C., Puglisi, S. J., Medvedev, P., Salson, M., and Chikhi, R. (2021).
Data structures based on k-mers for querying large collections of sequencing data sets.
Genome Research, 31(1):1-12.

